Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition
نویسندگان
چکیده
Tree mortality is a key process underlying forest dynamics and community assembly. Understanding how tree mortality is driven by simultaneous drivers is needed to evaluate potential effects of climate change on forest composition. Using repeat-measure information from c. 400,000 trees from the Spanish Forest Inventory, we quantified the relative importance of tree size, competition, climate and edaphic conditions on tree mortality of 11 species, and explored the combined effect of climate and competition. Tree mortality was affected by all of these multiple drivers, especially tree size and asymmetric competition, and strong interactions between climate and competition were found. All species showed L-shaped mortality patterns (i.e. showed decreasing mortality with tree size), but pines were more sensitive to asymmetric competition than broadleaved species. Among climatic variables, the negative effect of temperature on tree mortality was much larger than the effect of precipitation. Moreover, the effect of climate (mean annual temperature and annual precipitation) on tree mortality was aggravated at high competition levels for all species, but especially for broadleaved species. The significant interaction between climate and competition on tree mortality indicated that global change in Mediterranean regions, causing hotter and drier conditions and denser stands, could lead to profound effects on forest structure and composition. Therefore, to evaluate the potential effects of climatic change on tree mortality, forest structure must be considered, since two systems of similar composition but different structure could radically differ in their response to climatic conditions.
منابع مشابه
Across a macro-ecological gradient forest competition is strongest at the most productive sites
We tested the hypothesis that the effect of forest basal area on tree growth interacts with macro-ecological gradients of primary productivity, using a large dataset of eucalypt tree growth collected across temperate and sub- tropical mesic Australia. To do this, we derived an index of inter-tree competition based on stand basal area (stand BA) relative to the climatically determined potential ...
متن کاملDisentangling competitive versus climatic drivers of tropical forest mortality
1. Tropical forest mortality is controlled by both biotic and abiotic processes, but how these processes interact to determine forest structure is not well understood. Using long-term demography data from permanent forest plots at the Paracou Tropical Forest Research Station in French Guiana, we analyzed the relative influence of competition and climate on tree mortality. We found that self-thi...
متن کاملForest stand structure, productivity, and age mediate climatic effects on aspen decline.
Because forest stand structure, age, and productivity can mediate the impacts of climate on quaking aspen (Populus tremuloides) mortality, ignoring stand-scale factors limits inference on the drivers of recent sudden aspen decline. Using the proportion of aspen trees that were dead as an index of recent mortality at 841 forest inventory plots, we examined the relationship of this mortality inde...
متن کاملClimate as a Driver of Forest Growth and Mortality
Unasylva 231/232, Vol. 60, 2009 Forests, which today cover 30 percent of the world’s land surface (FAO, 2006), are being rapidly and directly transformed in many areas by the impacts of expanding human populations and economies. Less evident are the pervasive effects of ongoing climatic changes on the condition and status of forests around the world. Recent examples of drought and heat-related ...
متن کاملWidespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought.
Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web r...
متن کامل